Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
BMC Pediatr ; 23(1): 156, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2277530

ABSTRACT

BACKGROUND: The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), accountable for Coronavirus disease 2019 (COVID-19), may cause hyperglycemia and additional systemic complexity in metabolic parameters. It is unsure even if the virus itself causes type 1 or type 2 diabetes mellitus (T1DM or T2DM). Furthermore, it is still unclear whether even recuperating COVID-19 individuals have an increased chance to develop new-onset diabetes. METHODS: We wanted to determine the impact of COVID-19 on the levels of adipokines, pancreatic hormones, incretins and cytokines in acute COVID-19, convalescent COVID-19 and control children through an observational study. We performed a multiplex immune assay analysis and compared the plasma levels of adipocytokines, pancreatic hormones, incretins and cytokines of children presenting with acute COVID-19 infection and convalescent COVID-19. RESULTS: Acute COVID-19 children had significantly elevated levels of adipsin, leptin, insulin, C-peptide, glucagon and ghrelin in comparison to convalescent COVID-19 and controls. Similarly, convalescent COVID-19 children had elevated levels of adipsin, leptin, insulin, C-peptide, glucagon, ghrelin and Glucagon-like peptide-1 (GLP-1) in comparison to control children. On the other hand, acute COVID-19 children had significantly decreased levels of adiponectin and Gastric Inhibitory Peptide (GIP) in comparison to convalescent COVID-19 and controls. Similarly, convalescent COVID-19 children had decreased levels of adiponectin and GIP in comparison to control children. Acute COVID-19 children had significantly elevated levels of cytokines, (Interferon (IFN)) IFNγ, Interleukins (IL)-2, TNFα, IL-1α, IL-1ß, IFNα, IFNß, IL-6, IL-12, IL-17A and Granulocyte-Colony Stimulating Factors (G-CSF) in comparison to convalescent COVID-19 and controls. Convalescent COVID-19 children had elevated levels of IFNγ, IL-2, TNFα, IL-1α, IL-1ß, IFNα, IFNß, IL-6, IL-12, IL-17A and G-CSF in comparison to control children. Additionally, Principal component Analysis (PCA) analysis distinguishes acute COVID-19 from convalescent COVID-19 and controls. The adipokines exhibited a significant correlation with the levels of pro-inflammatory cytokines. CONCLUSION: Children with acute COVID-19 show significant glycometabolic impairment and exaggerated cytokine responses, which is different from convalescent COVID-19 infection and controls.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , Child , Incretins/metabolism , Adipokines/metabolism , Leptin , Ghrelin , Tumor Necrosis Factor-alpha , Complement Factor D , Interleukin-17 , Pancreatic Hormones , Adiponectin , Glucagon , Interleukin-6 , C-Peptide , SARS-CoV-2 , Cytokines , Interleukin-12 , Granulocyte Colony-Stimulating Factor
2.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1934137

ABSTRACT

Obesity is a chronic disease caused by an excess of adipose tissue that may impair health by altering the functionality of various organs, including the lungs. Excessive deposition of fat in the abdominal area can lead to abnormal positioning of the diaphragm and consequent reduction in lung volume, leading to a heightened demand for ventilation and increased exposure to respiratory diseases, such as chronic obstructive pulmonary disease, asthma, and obstructive sleep apnoea. In addition to mechanical ventilatory constraints, excess fat and ectopic deposition in visceral depots can lead to adipose tissue dysfunction, which promotes metabolic disorders. An altered adipokine-secretion profile from dysfunctional adipose tissue in morbid obesity fosters systemic, low-grade inflammation, impairing pulmonary immune response and promoting airway hyperresponsiveness. A potential target of these adipokines could be the NLRP3 inflammasome, a critical component of the innate immune system, the harmful pro-inflammatory effect of which affects both adipose and lung tissue in obesity. In this review, we will investigate the crosstalk between adipose tissue and the lung in obesity, highlighting the main inflammatory mediators and novel therapeutic targets in preventing pulmonary dysfunction.


Subject(s)
Adipose Tissue , Obesity, Morbid , Adipokines/metabolism , Adipose Tissue/metabolism , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Obesity, Morbid/metabolism
3.
Cells ; 11(6)2022 03 14.
Article in English | MEDLINE | ID: covidwho-1887165

ABSTRACT

The epicardial adipose tissue (EAT) is the visceral fat depot of the heart which is highly plastic and in direct contact with myocardium and coronary arteries. Because of its singular proximity with the myocardium, the adipokines and pro-inflammatory molecules secreted by this tissue may directly affect the metabolism of the heart and coronary arteries. Its accumulation, measured by recent new non-invasive imaging modalities, has been prospectively associated with the onset and progression of coronary artery disease (CAD) and atrial fibrillation in humans. Recent studies have shown that EAT exhibits beige fat-like features, and express uncoupling protein 1 (UCP-1) at both mRNA and protein levels. However, this thermogenic potential could be lost with age, obesity and CAD. Here we provide an overview of the physiological and pathophysiological relevance of EAT and further discuss whether its thermogenic properties may serve as a target for obesity therapeutic management with a specific focus on the role of immune cells in this beiging phenomenon.


Subject(s)
Adipose Tissue , Coronary Artery Disease , Adipokines/metabolism , Adipose Tissue/metabolism , Coronary Artery Disease/metabolism , Humans , Obesity/metabolism , Pericardium/metabolism
4.
Eur Rev Med Pharmacol Sci ; 26(2): 695-709, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1675568

ABSTRACT

In 2009, obesity was identified for the first time as a risk factor for increased disease severity and mortality in patients infected with the H1N1 influenza A virus. During the current COVID-19 pandemic, overweight and obesity have been described as independent risk factors of disease severity and mortality due to COVID-19. Excess visceral fat is associated with systemic chronic microinflammation, changes in adipokine release, and oxidative stress. These disturbances result in an impaired immune response, including dysfunction in lymphocyte action and antibody production. Moreover, obesity is a cause of endothelial dysfunction, pro-coagulation state, and enhanced expression of angiotensin-converting enzyme 2 (ACE-2), which contributes to the infection itself and the severity of the disease. We analyzed both the impact of obesity on the severity of COVID-19 and the potential mechanism that influences this severity. Moreover, we discuss the effect of obesity complications on the severity of disease and mortality of patients with COVID-19. Furthermore, we summarize the effectiveness of COVID-19 vaccination in patients with obesity. Finally, we analyzed the effect of the COVID-19 pandemic on mood disturbances and emotional eating and, as a consequence, the development of obesity or an increase in its severity. In summary, the studies conducted during the COVID-19 pandemic indicate that effective obesity treatment should be initiated at once. In addition, the data confirm the need to organize efficient obesity treatment systems for the sake of not only the individual but also society.


Subject(s)
COVID-19/pathology , Influenza, Human/pathology , Obesity/complications , Adipokines/metabolism , Angiotensin-Converting Enzyme 2/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , COVID-19/complications , COVID-19/epidemiology , COVID-19/mortality , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/complications , Influenza, Human/epidemiology , Meta-Analysis as Topic , Obesity/epidemiology , Oxidative Stress , Pandemics , Risk Factors , Severity of Illness Index , Survival Analysis , TOR Serine-Threonine Kinases/metabolism
5.
Front Biosci (Landmark Ed) ; 26(11): 1132-1146, 2021 11 30.
Article in English | MEDLINE | ID: covidwho-1552202

ABSTRACT

Background: COVID-19 pandemic has exacerbated the problem of physical inactivity and weight gain. Consequently, new strategies to counteract weight gain are being sought. Because of their accessibility, interval training and cold therapy are the most popular such strategies. We here aimed to examine the effect of 6 units of high-intensity interval training (HIIT), applied alone or in combination with 10 sessions of whole-body cryotherapy (WBC; 3 min at -110 ∘C per session) on incretins, myokines, and adipokines levels. Materials and methods: The study involved 65 subjects (body mass index of approximately 30 kg•m-2). The subjects were randomly divided into training group (TR; n = 27) and training supported by WBC group (TR-WBC; n = 38). Blood samples were collected before, immediately following, and 4 weeks after the intervention. Results: Fibroblast growth factor 21 (FGF21) levels significantly increased (p = 0.03) and adiponectin levels increased in the TR group (p = 0.05) compared with those recorded in TR-WBC group 24 h after the end of experimental protocol. Beneficial changes in the lipid profile (p = 0.07), a significant drop in visfatin levels (p < 0.05), and the improvement in ß-cell function (HOMA-B; p = 0.02) were also observed in the TR group in the same time point of study. While TR-WBC did not induce similar changes, it ameliorated blood glucose levels (p = 0.03). Changes induced by both interventions were only sustained for 4 weeks after treatment. Conclusion: Collectively, HIIT, alone and in combination with WBC, positively affects metabolic indicators, albeit, most likely, different mechanisms drive the beneficial effects of different treatments.


Subject(s)
Adipokines/metabolism , Cryotherapy , Cytokines/metabolism , Glucose/metabolism , High-Intensity Interval Training , Homeostasis , Obesity/physiopathology , Overweight/physiopathology , Humans , Obesity/metabolism , Overweight/metabolism
6.
Int J Obes (Lond) ; 45(5): 998-1016, 2021 05.
Article in English | MEDLINE | ID: covidwho-1104459

ABSTRACT

BACKGROUND: Recent studies have shown that obesity is associated with the severity of coronavirus disease (COVID-19). We reviewed clinical studies to clarify the obesity relationship with COVID-19 severity, comorbidities, and discussing possible mechanisms. MATERIALS AND METHODS: The electronic databases, including Web of Science, PubMed, Scopus, and Google Scholar, were searched and all studies conducted on COVID-19 and obesity were reviewed. All studies were independently screened by reviewers based on their titles and abstracts. RESULTS: Forty relevant articles were selected, and their full texts were reviewed. Obesity affects the respiratory and immune systems through various mechanisms. Cytokine and adipokine secretion from adipose tissue leads to a pro-inflammatory state in obese patients, predisposing them to thrombosis, incoordination of innate and adaptive immune responses, inadequate antibody response, and cytokine storm. Obese patients had a longer virus shedding. Obesity is associated with other comorbidities such as hypertension, cardiovascular diseases, diabetes mellitus, and vitamin D deficiency. Hospitalization, intensive care unit admission, mechanical ventilation, and even mortality in obese patients were higher than normal-weight patients. Obesity could alter the direction of severe COVID-19 symptoms to younger individuals. Reduced physical activity, unhealthy eating habits and, more stress and fear experienced during the COVID-19 pandemic may result in more weight gain and obesity. CONCLUSIONS: Obesity should be considered as an independent risk factor for the severity of COVID-19. Paying more attention to preventing weight gain in obese patients with COVID-19 infection in early levels of disease is crucial during this pandemic.


Subject(s)
COVID-19 , Obesity , Adipokines/metabolism , Adipose Tissue/immunology , Adipose Tissue/metabolism , Adult , Aged , Aged, 80 and over , Comorbidity , Cytokines/metabolism , Female , Humans , Inflammation , Male , Middle Aged , Prognosis , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL